OL@ Mercury-free floating switches and immersion probes with potential-free micro-contact

for automatic control, regulation and signalling of liquid levels
Switching element: potential-free microswitch

- Contact is effected by the rising and falling of the float with the liquid

Jola Spezialschalter K. Mattil \& Co. KG

> P.O.B. 1149 • D-67460 Lambrecht (Pfalz) • Germany
> Phone: +49 $6325 / 188-01 \cdot$ Fax: + +49 6325 / 6396
> E-mail: kontakt@jola-info.de • Website: www.jola-info.de

SSP ... and SI/SSP/NL 1/K/... Variant 0 (8) I M2 / II 2 GD EEx ia I / IIB T6 floating switches

These floating switches are designed for mounting from the side or from the top.
To ensure a correct switching the cable must be fixed at the required height using a stuffing gland, for example, in the case of mounting from the side or using a fixing weight, for example, in case of mounting from the top.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SSP 3/K/ SSP/S3/K/...	SSP 1/K/... SSP/S1/K/...	SI/SSP/NL 1/K/... Variant 0 I I M2 II 2 GD
EEx ia I I IIB T6			

Operating principle Options for safety appl.

Recommended appl.

Float material
Seal material
Float protection class
Temperature appl. range
Max. immersion depth of the float
Connecting cable
Application range of
the connecting cable

Connecting cable length

Optional extras

ball-operated microswitch, potential-free changeover contact
diodes (= variant 1) or resistors
(= variant 2), see page 1-1-21
via Jola protection relay
KR ..
KR 5/Ex
(囚) I (M1)/II (1) GD
[EExia] I / IIC

PP
FPM; on request: EPDM
IP 68 ।
IP $68 \mathrm{~T} 80^{\circ} \mathrm{C}$
see chart on page 1-1-5
max. 10 metres head of water at $+20^{\circ} \mathrm{C}$
see chart on page 1-1-5

- black or blue PVC cable:
water, used water, slightly aggressive liquids, oils without aromatic additives, fuel oil and diesel fuel with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$
- grey A05RN-F cable:
water, used water, slightly aggressive liquids with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$
- red-brown silicone cable:
water and certain other liquids with a specific gravity $\geq 0.82 \mathrm{~g} / \mathrm{cm}^{3}$, with low mechanical strength
- black CM cable:
water and certain acids and lyes with a specific gravity $\geq 1 \mathrm{~g} / \mathrm{cm}^{3}$
1 metre, other cable lengths on request.
When ordering, please always state the desired cable length and cable type.
stuffing glands and fixing weights made of brass, stainless steel 316 Ti or PP
stuffing glands and fixing weights made of brass, stainless steel 316 Ti or conductive PP

Optional extras:

Floating switch mounting only possible from the inside:

- stuffing gland $\mathrm{G}^{3} / 8$, brass
- stuffing gland $\mathrm{G}^{1 / 2}$, brass
- stuffing gland $\mathrm{G}^{11 / 2}$, stainless steel 316 Ti
- stuffing gland $\mathrm{G}^{1} / 2$, PP

Floating switch mounting possible from the outside:

- stuffing gland G1, brass
- stuffing gland G1, stainless steel 316 Ti
- stuffing gland G1, PP

Optional extras: fixing weight for SSP ... or SI/SSP/NL ...

SSX ．．．and SI／SSX 1／K／．．．Variant 0 （8x I M2／II 1 GD EEx ia I／IIC T6 floating switches

These floating switches are designed for mounting from the side or from the top．
To ensure a correct switching the cable must be fixed at the required height using a stuffing gland，for example，in the case of mounting from the side or using a fixing weight，for example，in case of mounting from the top．
These units are not suitable for use in turbulent liquids（e．g．in stirrer tanks）．

Technical data	$\begin{aligned} & \text { SSX 3/K/... } \\ & \text { SSX/S3/K/... } \end{aligned}$	$\begin{aligned} & \text { SSX 1/K/... } \\ & \text { SSX/S1/K/... } \end{aligned}$	```SI/SSX 1/K/... Variant 0 (囚) I M2 / II 1 GD EEx ia I / IIC T6```
Application Switching voltage Switching current Switching capacity	for standard appl． between AC／DC 24 V and AC／DC 250 V between AC 20 mA and AC 3 （1）A or between DC 20 mA and DC 100 mA max． 350 VA	for light current appl． between AC／DC 1 V and AC／DC 42 V between AC 0.1 mA and AC 100 （50）mA or between DC 0.1 mA and DC 10 mA max． 4 VA	for use in intrinsically safe circuits in mines susceptible to firedamp or in potentially explosive atmospheres in categories zone 0,20 ， 1，21， 2 or 22 ．EC type examination certificate INERIS 03ATEX0149
Operating principle Options for safety appl． Recommended appl． Float material Seal material Float protection class	ball－operated mic \qquad	switch，potential－free diodes（＝varia （＝variant 2 ）， via Jola pr KR ．． PM；on request：EPDM 8	hangeover contact nt 1）or resistors ee page 1－1－21 tection relay KR 5／Ex © $⿴ 囗 十$（M1）／II（1）GD ［EEx ia］I／IIC conductive PP $68 \mathrm{~T} 80^{\circ} \mathrm{C}$

Temperature
application range
Max．immersion depth of the float
Connecting cable
Application range of
the connecting cable

Connecting cable length

Optional extras
see chart on page 1－1－6
max． 10 metres head of water at $+20^{\circ} \mathrm{C}$
see chart on page 1－1－6
－black or blue PVC cable：
water，used water，slightly aggressive liquids， oils without aromatic additives，fuel oil and diesel fuel
with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
－grey A05RN－F cable：
water，used water，slightly aggressive liquids
with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
－black CM cable：
water and certain acids and lyes with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
－white PTFE cable：
suitable for all liquids in which the float material PP and the
seal material FPM or EPDM are also resistant
with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
2 metres，other cable lengths on request．
When ordering，please always state the desired cable length and cable type．
－external fixing weight made of cast steel
for liquids with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
（not suitable for the PTFE cable）
－external fixing weight made of stainless steel 316 Ti for liquids with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
（not suitable for the PTFE cable）
－internal fixing weight（integrated in the float）for liquids
with a specific gravity between 0.95 and $1.05 \mathrm{~g} / \mathrm{cm}^{3}$

Optional extras:
external fixing weight made of cast steel or stainless steel 316 Ti

External fixing weight made of cast steel

External fixing weight made of stainless steel 316 Ti

List of the available SSP ... and SI/SSP ... floating switches

Types	Application and cable $(1)=3 \times 0.75$	Temperature application range	VDE mark	EMC certificate	EEx certificate
SSP 3/K/PVC	application up to max. 250 V , black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
SSP 1/K/PVC	light current application, black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSP 3/K/RN	application up to max. 250 V , grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
SSP 1/K/RN	light current application, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSP/S3/K/SIL	application up to max. 250 V , red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSP/S1/K/SIL	light current application, red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSP/S3/K/CM	application up to max. 250 V , black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSP/S1/K/CM	light current application, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SI/SSP/NL 1/K/PVC Variant 0 (®) M2 / II 2 GD EEx ia I / IIB T6	for use in intrinsically safe circuits *, blue PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/SSP/NL 1/K/RN Variant 0 (8) I M2 / II 2 GD EEx ial / IIB T6	for use in intrinsically safe circuits *, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
$\begin{aligned} & \text { SI/SSP/NL 1/K/SIL } \\ & \text { Variant } 0 \\ & \text { I M2 / II } 2 \text { GD } \\ & \text { EEx ia I / IIB T6 } \end{aligned}$	$\begin{aligned} & \text { for use in intrinsically } \\ & \text { safe circuits *, } \\ & \text { red-brown silicone cable, (1) } \end{aligned}$	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
$\begin{aligned} & \text { SI/SSP/NL 1/K/CM } \\ & \text { Variant } 0 \\ & \text { I M2 / II } 2 \text { GD } \\ & \text { EEx ia I / IIB T6 } \end{aligned}$	for use in intrinsically safe circuits *, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes

[^0]List of the available SSX ... and SI/SSX ... floating switches

Types	Application and cable $(1)=3 \times 0.75$	Temperature application range	VDE mark	EMC certificate	EEx certificate
SSX 3/K/PVC	application up to max. 250 V , black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
SSX 1/K/PVC	light current application, black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSX 3/K/RN	application up to max. 250 V , grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
SSX 1/K/RN	light current application, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSX/S3/K/CM	application up to max. 250 V , black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSX/S1/K/CM	light current application, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSX/S3/K/PTFE	application up to max. 250 V , white PTFE cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSX/S1/K/PTFE	light current application, white PTFE cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SI/SSX 1/K/PVC Variant 0 \& M2 / II 1 GD EEx ia I/ IIC T6	for use in intrinsically safe circuits *, blue PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/SSX 1/K/RN Variant 0 © EEx ia I/ IIC T6	for use in intrinsically safe circuits *, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/SSX 1/K/CM Variant 0 (8) M2 / II 1 GD EEx ia I/ IIC T6	for use in intrinsically safe circuits *, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/SSX 1/K/ PTFE Variant 0 () M2 / II 1 GD EEx ia I/ IIC T6	for use in intrinsically safe circuits *, white PTFE cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes

[^1]
with built-in weight for fixing of switching point

These floating switches are designed for mounting from the top.
They are fitted with a built-in weight for fixing the switching point at the desired height; this renders additional fastening of the switch at the height of the switching point unnecessary. This weight is dimensioned in such a way that the switch tilts around its own axis when the liquid level rises and then follows the rising liquid level (see function diagram on page 1-1-8). This tilting action of the float activates the switching process.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Function diagram of the
FS ... or SI/FS 1/K/... floating switch
(optimal functioning)

* depends on the cable used and

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

SSR ... and SI/SSR 1/K/... Variant 0 (®x I M2 / II 1 G EEx ia I / IIC T6 floating switches

These floating switches are designed for mounting from the side.
To ensure a correct switching the $G 1 / 2$ screw-in nipple must be screwed in a horizontal G1/2 sleeve

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SSR 3/K/... SSR/S3/K/...	SSR 1/K/... SSR/S1/K/...	SI/SSR 1/K/... Variant 0 (*) I M2 / II 1 G EEx ia I/ IIC T6
Application Switching voltage Switching current Switching capacity	for standard appl. between AC/DC 24 V and AC/DC 250 V between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA max. 350 VA	for light current appl. between AC/DC 1 V and AC/DC 42 V between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and DC 10 mA max. 4 VA	for use in intrinsically safe circuits in mines susceptible to firedamp or in potentially explosive atmospheres in categories zone 0,1 or 2. EC type examination certificate INERIS 03ATEX0149
Operating principle	ball-operated microswitch, potential-free changeover contact		

Options for safety appl.

Recommended appl.

Float material
Seal material
Appliance protection class

Temperature application range

Max. immersion depth of the float

Application range
Connecting cable

Connecting cable length
ball-operated microswitch, potential-free changeover contact
\qquad

KR (8) I (M1) / II (1) GD
[EEx ia] I/ IIC
stainless steel 316 Ti
PTFE
in installed condition inside the tank: IP 68, on the stuffing gland screw fitting outside the tank: IP 54
see chart on page 1-1-12
max. 30 metres head of water at $+20^{\circ} \mathrm{C}$
in liquids with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$
see chart on page 1-1-12.
The connecting cable is routed through a protective bellows made of stainless steel 316 Ti to which a G $1 / 2$ screw-in nipple is fastened.

2 metres from screw-in nipple, other cable lengths on request. When ordering, please always state the desired cable length and cable type.

SSR 3/K/RN

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}-$ Diagram of SSR ... or SI/SSR 1/K/... with stainless steel stirrup (optional)

Contact switches over at

Types	Application and cable $(1)=3 \times 0.75$	Temperature application range	VDE mark	EMC certificate	EEx certificate
FS 3/K/PVC	application up to max. 250 V , black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
FS 1/K/PVC	light current application, black PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
FS 3/K/RN	application up to max. 250 V , grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
FS 1/K/RN	light current application, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
FS/S3/K/SIL	application up to max. 250 V , red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
FS/S1/K/SIL	light current application, red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
FS/S3/K/CM	application up to max. 250 V , black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
FS/S1/K/CM	light current application, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SI/FS 1/K/PVC Variant 0 I M2 / II 2 GD EEx ia I / IIC T6	for use in intrinsically safe circuits *, blue PVC cable, (1)	$\begin{gathered} \min .+8^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/FS 1/K/RN Variant 0 (I M 2 / II 2 GD EEx ia I / IIC T6	for use in intrinsically safe circuits *, grey A05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/FS 1/K/SIL Variant 0 (I M2 / II 2 GD EEx ia I / IIC T6	$\begin{aligned} & \text { for use in intrinsically } \\ & \text { safe circuits *, } \\ & \text { red-brown silicone cable, (1) } \end{aligned}$	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
$\begin{gathered} \text { SI/FS 1/K/CM } \\ \text { Variant } 0 \\ \text { I M2 / II } 2 \text { GD } \\ \text { EEx ia I / IIC T6 } \end{gathered}$	for use in intrinsically safe circuits *, black CM cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes

[^2]List of the available SSR ... and SI/SSR ... floating switches

Types	Application and cable $\text { (1) = } 4 \text { G } 0.75$	Temperature application range	VDE mark	EMC certificate	EEx certificate
SSR 3/K/RN	application up to max. 250 V , black H05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+70^{\circ} \mathrm{C} \end{gathered}$	yes	yes	no
SSR 1/K/RN	light current application, black H05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+70^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSR/S3/K/SIL	application up to max. 250 V , red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SSR/S1/K/SIL	light current application, red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+85^{\circ} \mathrm{C} \end{gathered}$	no	yes	no
SI/SSR 1/K/RN Variant 0 (®) M2 / II 1 G EEx ial/IIC T6	for use in intrinsically safe circuits *, black H05RN-F cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes
SI/SSR 1/K/SIL Variant 0 (囚) I M / / II 1 G EExial/IIC T6	for use in intrinsically safe circuits *, red-brown silicone cable, (1)	$\begin{gathered} \min .0^{\circ} \mathrm{C} \\ \max .+60^{\circ} \mathrm{C} \end{gathered}$	no	yes	yes

[^3]
○la SS/PVDF 63/A ./K floating switches

These floating switches are designed for mounting from the top.
To ensure a correct switching the cable must be fixed at the required height using for example a fixing weight or a mounting pipe.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SS/PVDF 63/A 3/K	SS/PVDF 63/A 1/K
Application	for standard applications	for light current applications
Switching voltage	between AC/DC 24 V and $\mathrm{AC} / \mathrm{DC} 250 \mathrm{~V}$	$\begin{aligned} & \text { between } \\ & \text { AC/DC } 1 \mathrm{~V} \text { and AC/DC } 42 \mathrm{~V} \end{aligned}$
Switching current	between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA	between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and $D C 10 \mathrm{~mA}$
Switching capacity	max. 350 VA	max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety applications		diodes (= variant 1) or resistors (= variant 2), see page 1-1-21
Recommended application		via Jola protection relay KR ..
Float material		
Seal material		
Float protection class		
Temperature application range	from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Max. immersion depth of the float	max. 10 metres head of water at $+20^{\circ} \mathrm{C}$	
Application range	in liquids with a specific gravity $\geq 0.8 \mathrm{~g} / \mathrm{cm}^{3}$	
Connecting cable	white PTFE cable, $3 \times 0.75 \mathrm{~mm}^{2}$	
Connecting cable length	2 metres, other cable lengths on request. When ordering, please always state the desired cable length.	
Optional extra	fixing weight made of PTFE or PVDF	

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

○L@ SS/PTFE 55/A ./K floating switches

These floating switches are designed for mounting from the top.
To ensure a correct switching the cable must be fixed at the required height using for example a fixing weight or a mounting pipe.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SS/PTFE 55/A 3/K	SS/PTFE 55/A 1/K
Application	for standard applications	for light current applications
Switching voltage	between AC/DC 24 V and $\mathrm{AC} / \mathrm{DC} 250 \mathrm{~V}$	$\begin{aligned} & \text { between } \\ & \text { AC/DC } 1 \mathrm{~V} \text { and AC/DC } 42 \mathrm{~V} \end{aligned}$
Switching current	between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA	between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and $D C 10 \mathrm{~mA}$
Switching capacity	max. 350 VA	max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety applications		diodes (= variant 1) or resistors (= variant 2), see page 1-1-21
Recommended application		via Jola protection relay KR ..
Float material	PTFE	
Seal material	FPM	
Float protection class	IP 68	
Temperature application range	from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Max. immersion depth of the float	max. 3 metres head of water at $+20^{\circ} \mathrm{C}$	
Application range	in liquids with a specific gravity $\geq 1.0 \mathrm{~g} / \mathrm{cm}^{3}$	
Connecting cable	white PTFE cable, $3 \times 0.75 \mathrm{~mm}^{2}$	
Connecting cable length	2 metres, other cable lengths on request. When ordering, please always state the desired cable length.	
Optional extra	fixing weight made of PTFE	

Optional extra: fixing weight made of PTFE

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

శola SS/PTFE 55/./K floating switches

These floating switches are designed for mounting from the side.
To ensure a correct switching the $G 1 / 2$ (G2) screw-in nipple must be screwed in a horizontal G1⁄2 (G2) sleeve.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SS/PTFE 55/3/K	SS/PTFE 55/1/K
Application	for standard applications	for light current applications
Switching voltage	between AC/DC 24 V and $\mathrm{AC} / \mathrm{DC} 250 \mathrm{~V}$	between AC/DC 1 V and $\mathrm{AC} / \mathrm{DC} 42 \mathrm{~V}$
Switching current	between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA	between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and DC 10 mA
Switching capacity	max. 350 VA	max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety applications		diodes (= variant 1) or resistors (= variant 2), see page 1-1-21
Recommended application		via Jola protection relay KR ..
Float material		
Seal material		
Appliance protection class	in installed condition inside the tank: IP 68, on the stuffing gland screw fitting outside the tank: IP 54	
Temperature application range	from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Max. immersion depth of the float	max. 1 metre head	of water at $+20^{\circ} \mathrm{C}$
Application range	in liquids with a spec	ic gravity $\geq 1.0 \mathrm{~g} / \mathrm{cm}^{3}$
Connecting cable	white PTFE cab The connecting cable is route made of PTFE to which a $\mathbf{G}^{1} / 2$ is fas	$\mathrm{e}, 3 \times 0.75 \mathrm{~mm}^{2}$ through a protective bellows screw-in nipple made of PTFE ened.
Connecting cable length	2 metres from screw-in nipple, When ordering, please always	ther cable lengths on request. state the desired cable length.
Option	G2 screw-in nipple in place from the outside th	f $\mathbf{G}^{1 / 2}$ nipple for installation ough the tank wall

SSIPTFE 55/./K

SSIPTFE 55/./K with screw-in nipple G2 (optional)

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

○La SS/PTFE/B ./K floating switches

These floating switches are designed for mounting from the side.
To ensure a correct switching the $\mathrm{G}^{3} / 4$ screw-in nipple must be screwed in a horizontal $\mathrm{G}^{3} / 4$ sleeve.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	SS/PTFE/B 3/K	SS/PTFE/B 1/K
Application	for standard applications	for light current applications
Switching voltage	between AC/DC 24 V and $\mathrm{AC} / \mathrm{DC} 250 \mathrm{~V}$	between AC/DC 1 V and AC/DC 42 V
Switching current	between AC 20 mA and AC 3 (1) A or between DC 20 mA and DC 100 mA	between AC 0.1 mA and AC 100 (50) mA or between DC 0.1 mA and DC 10 mA
Switching capacity	max. 350 VA	max. 4 VA
Operating principle	ball-operated microswitch, potential-free changeover contact	
Options for safety applications		diodes (= variant 1) or resistors (= variant 2), see page 1-1-21
Recommended application		via Jola protection relay KR ..
Float material		
Seal material		M
Appliance protection class	in installed condition inside the tank: IP 68, on the stuffing gland screw fitting outside the tank: IP 54	
Temperature application range	from $0^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$	
Max. immersion depth of the float	max. 1.5 metre head	of water at $+20^{\circ} \mathrm{C}$
Application range	in liquids with a spec	ic gravity $\geq 0.9 \mathrm{~g} / \mathrm{cm}^{3}$
Connecting cable	white PTFE cab The connecting cable is route made of PTFE to which a $\mathbf{G}^{3} / 4$ is fas	, $3 \times 0.75 \mathrm{~mm}^{2}$. through a protective bellows screw-in nipple made of PTFE ened.
Connecting cable length	2 metres from screw-in nipple, When ordering, please always	other cable lengths on request. state the desired cable length.

SS/PTFE/B ./K

Switching action in liquids with a specific gravity of $1 \mathrm{~g} / \mathrm{cm}^{3}$

Contact switches over at

Options for 1/K/... and SI/... 1/K/... floating switches types:

Variant 1:

Two (2) diodes of the type 1N4004 or equivalent

Variant 2:

Two (2) metal film resistors or carbon film resistors R 1, R 2, each greater than or equal to 2 kohm, each P greater than or equal to $1 / 4 \mathrm{~W}$
and
one (1) metal film resistor or carbon film resistor R 3 greater than or equal to 330 ohm, P greater than or equal to 1 W .

TS/O/... mercury-free immersion probes
for automatic control of liquid levels

Particularly suitable for fuel oil tanks, diesel-fired emergency power generators and hydraulic oil tanks.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Functional description based on a switching example:

Automatic filling of a tank

The bottom floating switch falls together with the liquid to a minimum level and acts on the contactor coil winding when it falls below the horizontal. Liquid is then pumped into the tank. When the maximum level is reached, the top floating switch rises above the horizontal, the contactor holding circuit is interrupted, and the filling process is stopped.

Technical data	TS/O/...
Probe tube material Probe tube diameter	PP
	depends on the type and number of
	switches, see chart
Probe tube length Screw-in nipple (on request) Terminal box	according to customer's specifications
	PP ; flange on request
	PP, A 307, $120 \times 80 \times 55 \mathrm{~mm}$, protection class IP 65, for max. 12
	terminals;
	for more than 12 terminals: polyester,
	A 113, $160 \times 160 \times 90 \mathrm{~mm}$,
Mounting orientation Temperature application range	
	depends on the type of cable used,
	see page 1-1-5
Pressure resistance Mounted floating switches	for pressureless applications only
	SSP ... (please always state when
	ordering)
Electrical data	see technical data on pages 1-1-1 and fol.

 terminals;
for more than 12 terminals: polyester,
A $113,160 \times 160 \times 90 \mathrm{~mm}$, protection class IP 65 vertical depends on the type of cable used, see page 1-1-5
for pressureless applications only
SSP •.• (please always state when ordering)
see technical data on pages 1-1-1 and fol.

Screw-in nippel (on request) G1 $1 / 2$ or G2

Type designation	No. of mounted floating switches	Type of mounted floating switches	Probe tube diameter	Screw-in nippel (on request)
TS/O/1 x SSP ...	1	SSP ...	16 mm	G1½ or G2
TS/O/2 x SSP •••	2	(please always	20 mm	G2
TS/O/3 x SSP •••	3	state when	25 mm	G2
TS/O/4 x SSP •••	4	ordering)	25 mm	G2
TS/O/5 x SSP •••	5		25 mm	G2

$\bullet \bullet$ = to be specified, see page 1-1-5
On request: - with more than 5 mounted floating switches,

- with adjustable screw-in nipple.

The above equipment will be manufactured in accordance with customer's specifications.

For enquiries or orders, please complete the questionnaire on page 1-1-29 or 1-1-30 (as applicable).

-0la TS/... mercury-free immersion probes

For the automatic control of liquids levels in tanks or shafts.
These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Mode of operation:
see example on page 1-1-22.

TS/E/1 x SSR ... with stainless steel stirrup to limit float movement and with cable in place of terminal box

Technical data	TS/PP/...	TS/G/...	TS/E/...	TS/PTFE/...
Probe tube material	PP	stainless steel 316 Ti see chart on page 1-1-24		PTFE
Probe tube diameter				
Probe tube length	according to customer's specifications			
Option: flange	on request, but making allowance for the installation dimensions of the mounted floating switches			

Terminal box

Mounting orientation cast aluminiun, A 119, $125 \times 80 \times 60 \mathrm{~mm}$, protection class IP 65, for max. 12 terminals

PP, A 307,
$120 \times 80 \times 55 \mathrm{~mm}$, protection class

IP 65, for max. 9 terminals

$$
\begin{gathered}
\text { PP, A } 307, \\
120 \times 80 \times 55 \mathrm{~mm}, \\
\text { protection class } \\
\text { IP } 65, \\
\text { for max. } \\
9 \text { terminals }
\end{gathered}
$$

for more than 9 or 12 terminals: polyester, A 113, or cast aluminiun, A 113b, each $160 \times 160 \times 90 \mathrm{~mm}$, protection class IP 65;
on request: with free connecting cable vertical
depends on the type of cable used, see page
|-1-6 $\mid-1-6$ | $1-1-12$ | $1-1-15$
for pressureless applications only switches

SSX •••
see technical data on page
1-1-3 | 1-1-3 | 1-1-9 | 1-1-17

Suitable for types on pages 1-1-23 and 1-1-24:
$\bullet \bullet=$ to be specified according to the list of types on page 1-1-6 or 1-1-12

- = to be specified: 3 or 1 (for type ... $3 / \mathrm{K}$ or ... $1 / \mathrm{K}$); see page 1-1-17

On request TS/PTFE/... with screw-in nipple G2 for mounting from inside the container (the terminal box has to be removed prior to mounting and then fixed back in place).
The above equipment will be manufactured in accordance with customer's specifications.

For enquiries or orders, please complete the questionnaire on page 1-1-29 or 1-1-30 (as applicable).

Model overview

Type designation	No of mounted floating switches	Type of mounted floating switches	Probe tube diameter
TS/PP/1 x SSX •••	1	SSX	
TS/PP/2 x SSX •••	2	(please always	
TS/PP/3 x SSX •••	3	state	32 mm
TS/PP/4 x SSX •••	4	when ordering)	
TS/PP/5 x SSX •••	5		
TS/G/1 x SSX •••	1	SSX •••	28 mm
TS/G/2 \times SSX $\bullet \bullet \bullet$	2	(please always	28 mm
TS/G/3 \times SSX $\bullet \bullet \bullet$	3	state	34 mm
TS/G/4 x SSX •••	4	when ordering)	34 mm
TS/G/5 x SSX •••	5		34 mm
TS/E/1 x SSR •••	1	SSR ••• with	28 mm
TS/E/2 x SSR •••	2	stirrup	28 mm
TS/E/3 x SSR •••	3	(please always	34 mm
TS/E/4 x SSR •••	4	state	34 mm
TS/E/5 x SSR •••	5	when ordering)	34 mm
TS/PTFE/1 x SS/PTFE 55/0/K	1	SS/PTFE 55/•/K	
TS/PTFE/2 x SS/PTFE 55/0/K	2	(please always	
TS/PTFE/3 x SS/PTFE 55/0/K	3	state	27 mm
TS/PTFE/4 x SS/PTFE 55/0/K	4	when ordering)	
TS/PTFE/5 x SS/PTFE 55/^/K	5		

On request also with more than 5 mounted floating switches.

Design examples:

TS/E/4 x SSR ... with stirrups

TS/PTFE/2 x SS/PTFE 55/./K with mounting flange

プ@
 TSV/... mercury-free level monitors

For maximum or minimum display or alarm signal.

Probe tube in terminal box/screw-in nipple adjustable; hense all desired filling levels can be recorded along the entire length of the probe tube.

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).

Technical data	TSV/PP/SSP ./K/...	TSV/E/SSP ./K/...
Probe tube material	PP	stainless steel 316 Ti
Probe tube diameter	12 mm	12 mm
Probe tube length	approx. 500 mm , longer on request	
Screw-in nipple	PP, G1	tainless steel $316 \mathrm{Ti}, \mathrm{G} 1$
Terminal box	PP, A 307, $120 \times 80 \times 55 \mathrm{~mm}$, protection class IP 54	
Mouting orientation	vertical	
Temperature application range	depends on the type of cable used, see chart on page 1-1-5	
Pressure resistance	for pressureless applications only	
Mounted floating switch	SSP ... (see pages 1-1-1, 1-1-2 and 1-1-5)	
Electrical data	see technical data on pages 1-1-1, 1-1-2 and 1-1-5	

. = to be specified: 3 or 1 (for type SSP $3 / \mathrm{K}$ or SSP $1 / \mathrm{K}$); see page 1-1-1
$\ldots=$ to be specified according to the list of types on page 1-1-5

TS/E.../. x SI/SSP/NL 1/K/...
 Variant 0 II 2 G EEx ia IIB T6 and TS/E..I. x SI/SSX 1/K/... Variant 0 ® II 2 G EEx ia IIC T6 and TS/E..../. x SI/SSR 1/K/... Variant 0 © II 2 G or II $2 / 1$ G EEx ia IIC T6 mercury-free immersion probes

These units are not suitable for use in turbulent liquids (e.g. in stirrer tanks).
Mode of operation: see example on page 1-1-22.

[^4]Model overview and technical data

Type designation	No of mounted floating switches	Type of mounted floating switches	Probe tube diameter	$\begin{gathered} \text { Terminal } \\ \text { box } \\ \text { used } \end{gathered}$	Design example on page 1-1-28
TS/E20/1 x SI/SSP/NL 1/K/••• Variant 0 @ II 2 G EEx ia IIB T6 TS/E20/2 x SI/SSP/NL 1/K/••• Variant 0 II 2 G EEx ia IIB T6 TS/E20/3 x SI/SSP/NL 1/K/••• Variant 0 II 2 G EEx ia IIB T6	2 3	SI/SSP/NL1/K/oo. Variant 0 - 1 M2 / II 2 GD EEx ia I/IIB T6	20 mm 20 mm 20 mm	A 301 A 301 A 120	(1)
TS/E28/1 x SI/SSP/NL 1/K/••• Variant 0 II 2 G EEx ia IIB T6 TS/E28/2 x SI/SSP/NL 1/K/••• Variant 0 © II 2 G EEx ia IIB T6 TS/E28/3 x SI/SSP/NL 1/K/••• Variant 0 ॥ II 2 G EEx ia IIB T6 TS/E28/4 x SI/SSP/NL 1/K/•••• Variant 0 II 2 G EEx ia IIB T6 TS/E28/5 x SI/SSP/NL 1/K/••• Variant 0 ® II 2 G EEx ia IIB T6 TS/E28/6 x SI/SSP/NL 1/K/••• Variant 0 @ II 2 G EEx ia IIB T6	3 4 5 6	SI/SSP/NL 1/K/oo» Variant 0 (E) M2 / II 2 GD EEx ia I/IIB T6	28 mm 28 mm	A 301 A 301 A 120 A 120 A 113a A 113a	as (1), but probe tube dia. $28 \mathrm{~mm} \varnothing$ instead of $20 \mathrm{~mm} \varnothing$
TS/E28/1 x SI/SSX 1/K/••• Variant 0 II 2 G EEx ia IIC T6 TS/E28/2 x SI/SSX 1/K/••• Variant 0 ॥ II 2 G EEx ia IIC T6 TS/E34/3 x SI/SSX 1/K/••• Variant 0 @ II 2 G EEx ia IIC T6 TS/E34/4 x SI/SSX 1/K/•••• Variant 0 II 2 G EEx ia IIC T6 TS/E34/5 x SI/SSX 1/K/...• Variant 0 ® II 2 G EEx ia IIC T6 TS/E34/6 x SI/SSX 1/K/••• Variant 0 ॥ II 2 G EEx ia IIC T6	3 4	SI/SSX 1/K/...• Variant 0 (x) M2 / II 1 GD EEx ia I/IIC T6	28 mm 28 mm 34 mm 34 mm 34 mm 34 mm	A 301 A 301 A 120 A 120 A 113a A 113a	(2)
Version without flange (to separate zone 0 from zones 1 a. 2): TS/E28/1 x SI/SSR 1/K/••• Variant 0 ॥ II 2 G EEx ia IIC T6 TS/E28/2 x SI/SSR 1/K/••• Variant 0 II 2 G EEx ia IIC T6 TS/E34/3 x SI/SSR 1/K/••• Variant 0 ® II 2 G EEx ia IIC T6 TS/E34/4 x SI/SSR 1/K/••• Variant 0 ® II 2 G EEx ia IIC T6 TS/E34/5 x SI/SSR 1/K/••• Variant 0 © II 2 G EEx ia IIC T6 TS/E34/6 x SI/SSR 1/K/••• Variant 0 ® II 2 G EEx ia IIC T6	2 3 4 5	SI/SSR 1/K/••• Variant 0 \& M / / II 1 G EEx ia I/IIC T6, all with stirrup	28 mm 28 mm 34 mm 34 mm 34 mm 34 mm	A 301 A 301 A 120 A 120 A 113a A 113a	(3)

... $=$ to be specified according to the list of types on page 1-1-5 or 1-1-6 or 1-1-12

Version with flange (to separate zone 0 from zones 1 a. 2):

TS/EZT28/1 x SI/SSR 1/K/••• Variant 0 II $2 / 1$ G EEx ia IIC T6 TS/EZT28/2 x SI/SSR 1/K/.... Variant 0 @ II $2 / 1$ G EEx ia IIC T6 TS/EZT34/3 x SI/SSR 1/K/•••• Variant 0 II $2 / 1$ G EEx ia IIC T6 TS/EZT34/4 x SI/SSR 1/K/.... Variant 0 @ II $2 / 1$ G EEx ia IIC T6 TS/EZT34/5 x SI/SSR 1/K/.... Variant 0 ॥ $1 \mathrm{l} / 1 \mathrm{G}$ EEx ia IIC T6 TS/EZT34/6 x SI/SSR 1/K/••• Variant 0 @ II $2 / 1$ G EEx ia IIC T6

				as	
1		28 mm	A 301	(3),	
2		28 mm	A 301	but with	
3	SI/SSR 1/K/.... Variant 0 (x I $\mathrm{M} 2 / \\| 1 \mathrm{G}$	34 mm	A 120	DN 500 PN 16	
4	EEx ia I/IIC T6, all with	34 mm	A 120	flange (to separate	
5	stirrup	34 mm	A 113a	zone 0 from	
6		34 mm	A 113a	$\begin{gathered} \text { zones } 1 \\ \text { and } 2 \end{gathered}$	

$\bullet \bullet \bullet$ to be specified according to the list of types on page 1-1-12

Design examples:

TS/E20/3 x SI/SSP/NL 1/K/... with screw-in nipple G2 (optional) and with terminal box A 120

TS/E34/4 x SI/SSX 1/K/... with mounting flange (optional) and with terminal box A 113a instead of A 120 (optional)

TS/E28/2 x SI/SSR 1/K/...
with terminal box A 301, without flange that is only for applications in zone 1 and 2

Questionnaire for enquiries and orders

for immersion probes with screw-in nipple or flange
Desired switching functions
(indication max., min., pump or valve
ON - OFF, filling or emptying,
dry-run or overflow protection):
Tank dimensions and installation \qquad conditions (sketch if applicable):

Type of liquid: \qquad Specific gravity: \qquad
Viscosity: \qquad Temperature: \qquad Operating pressure: \qquad
Desired immersion probe type: TS/...

When planning the design of the immersion probes, please consider that when the liquid level rises, the contact of the floating switches is not activated when the floating switches reach the horizontal position, but is activated as depicted in the diagrams of the various floating switches on pages 1-1-1 and following. When the liquid level sinks, the contact of the floating switches is activated shortly below their horizontal position.

	Desired floating switch type	Distance from sealing surface of screw-in nipple or flange in mm	Switching function (e.g. high alarm, pump ON, pump OFF etc.)	If float has a working direction: rising $=$ falling $=$ \downarrow
1				
2				
3				
4				
5				
6				

[^5]Desired switching functions
(indication max., min., pump or valve ON - OFF, filling or emptying,
dry-run or overflow protection):
Tank dimensions and installation \qquad conditions (sketch if applicable):

Type of liquid: \qquad Specific gravity: \qquad
Viscosity: \qquad Temperature: \qquad Operating pressure: \qquad
Desired immersion probe type: TS/...

When planning the design of the immersion probes, please consider that when the liquid level rises, the contact of the floating switches is not activated when the floating switches reach the horizontal position, but is activated as depicted in the diagrams of the various floating switches on pages 1-1-1 and following. When the liquid level sinks, the contact of the floating switches is activated shortly below their horizontal position.

	Desired floating switch type	Distance from end of probe tube in mm	Switching function (e.g. high alarm, pump ON, pump OFF etc.)	If float has a working direction: rising $=$ falling $=$ \downarrow
1				
2				
3				
4				
5				
6				

Desired options:

The units described in this documentation may only be installed, connected and started up by suitably qualified personnel!

Subject to deviations from the diagrams and technical data.

The details in this brochure are product specification descriptions and do not constitute assured properties in the legal sense.

[^0]: * $=$ in mines susceptible to firedamp or
 in potentially explosive atmospheres in categories zone 1, 21, 2 and 22

[^1]: * $=$ in mines susceptible to firedamp or in potentially explosive atmospheres in categories zone 0,20, 1, 21, 2 and 22

[^2]: * $=$ in mines susceptible to firedamp or
 in potentially explosive atmospheres in categories zone 1, 21, 2 and 22

[^3]: * $=$ in mines susceptible to firedamp or
 in potentially explosive atmospheres in categories zone 0,1 and 2

[^4]: For enquiries or orders, please complete the questionnaire on page 1-1-29 or 1-1-30 (as applicable).

[^5]: Desired options:

